Pattern-growth based frequent serial episode discovery

نویسندگان

  • Avinash Achar
  • A. Ibrahim
  • P. S. Sastry
چکیده

Article history: Received 28 October 2011 Received in revised form 23 June 2013 Accepted 25 June 2013 Available online 13 July 2013 Frequent episode discovery is a popular framework for pattern discovery from sequential data. It has found many applications in domains like alarmmanagement in telecommunication networks, fault analysis in the manufacturing plants, predicting user behavior in web click streams and so on. In this paper, we address the discovery of serial episodes. In the episodes context, there have been multiple ways to quantify the frequency of an episode. Most of the current algorithms for episode discovery under various frequencies are apriori-based level-wise methods. These methods essentially perform a breadth-first search of the pattern space. However currently there are no depth-first based methods of pattern discovery in the frequent episode framework under many of the frequency definitions. In this paper, we try to bridge this gap. We provide new depth-first based algorithms for serial episode discovery under non-overlapped and total frequencies. Under non-overlapped frequency, we present algorithms that can take care of span constraint and gap constraint on episode occurrences. Under total frequency we present an algorithm that can handle span constraint.Weprovide proofs of correctness for the proposedalgorithms.Wedemonstrate the effectiveness of the proposed algorithms by extensive simulations. We also give detailed run-time comparisons with the existing apriori-based methods and illustrate scenarios under which the proposed pattern-growth algorithms perform better than their apriori counterparts. © 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovering general partial orders in event streams

Sequence of time-ordered events arise in a variety of applications like customer transaction databases, alarm sequences in telecommunication networks, fault logs in manufacturing plant data, web interaction logs, etc. A popular framework for temporal pattern extraction from such data is the frequent episode discovery paradigm. An episode is a set of nodes with a partial order prescribed on it, ...

متن کامل

Discovery of Frequent Episodes in Event Logs

Lion’s share of process mining research focuses on the discovery of end-to-end process models describing the characteristic behavior of observed cases. The notion of a process instance (i.e., the case) plays an important role in process mining. Pattern mining techniques (such as frequent itemset mining, association rule learning, sequence mining, and traditional episode mining) do not consider ...

متن کامل

Extracting refrained phrases from music recordings using a frequent serial episode pattern mining method

In this paper, we discuss a method for extracting refrained phrases from a music signal by a discrete knowledge discovery processing approach instead of a signal processing approach. The proposed method consists of two processes: translating a music signal into a sequence of events that represent pitch information, and then mining the frequent patterns from the event sequences. The former is pe...

متن کامل

Mining local process models

In this paper we describe a method to discover frequent behavioral patterns in event logs. We express these patterns as local process models. Local process model mining can be positioned in-between process discovery and episode / sequential pattern mining. The technique presented in this paper is able to learn behavioral patterns involving sequential composition, concurrency, choice and loop, l...

متن کامل

Algorithms to Discover Complete Frequent Episodes in Sequences

Serial episode is a type of temporal frequent pattern in sequence data. In this paper we compare the performance of serial episode discovering algorithms. Many different algorithms have been proposed to discover different types of episodes for different applications. However, it is unclear which algorithm is more efficient for discovering different types of episodes. We compare Minepi and WinMi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Data Knowl. Eng.

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2013